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Abstract
The effective slip length at the interface between pure fluid flow and porous media com-
posed of packed spheres has been accurately characterized. In this study, as the first part 
of a two-part series, the slip length is obtained by matching the flow rate over the actual 
packed spheres from a direct simulation with that over an effective smooth surface using 
the Navier-slip boundary condition from analytic solution. Three classical packing struc-
tures, e.g., simple cubic (SC), face-centered cubic (FCC), and body-centered cubic (BCC), 
are employed. The accuracy of the slip length is validated by comparing the velocity field 
of flow over the actual porous architecture and over the effective smooth surface. We report 
that the slip length is best described as a function of the free slip area, rather than conven-
tional variables such as solid volume fraction and packing structure, with the error less 
than 7.5%. Then, the effective smooth surface with the slip length is applied to describe 
two flow problems: a stick–slip–stick flow and channel flow. The slip velocity as well as 
its slope at the interface and the velocity profile within the pure fluid channel is accurately 
reproduced. In Part 2, effective slip length will be employed to characterize optimal effec-
tive viscosity and stress jump coefficient in the Stokes–Brinkman approach, which can be 
applied for industrial and natural flows in dual-scale porous media in predicting flow solu-
tions inside and outside the porous media.
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1 Introduction

Fluid flow over and/or through porous media has received attention for the last several 
decades. It can be widely encountered in nature or in industry, for example, migration 
of contaminants in soil and ground water (Bear and Verruijt 2012; Palle and Aliabadi 
2016), enhanced oil recovery (Cohen and Cheng-Nian 1984), chemical reaction engi-
neering (Davis and Stone 1993; Jafari et  al. 2008), filtration (Chellam and Wiesner 
1993), composites processing (Martins et  al. 2009), and chromatography (Rogers and 
Wirth 2012; Wu et al. 2013). Studies have shown that there appears a nonzero velocity 
in the flow direction on a corrugated solid surface of porous media as a fluid passes. The 
flow enhancement caused by the slip phenomenon may provide a notable improvement, 
for example, in separation efficiency for chromatography (Rogers and Wirth 2012; Wu 
et al. 2013) and in predicting the pumping characteristics (Rajesh Kumar and Ramesh 
Babu 2019). In addition, accurate characterization and modeling of the interfacial slip is 
of great importance to understand the bubble transport through a porous channel (Gan-
gloff et  al. 2014, 2015) or particle deposition on fiber tows for advanced composites 
materials (Yergey et al. 2010; Hwang et al. 2011).

A number of theoretical, experimental, and numerical studies have been conducted to 
investigate the slip phenomenon for flows over and/or through porous media. For exam-
ple, a pioneering experiment on the Poiseuille flow over a naturally permeable block 
performed by Beavers and Joseph (1967) reported that mass efflux was greater than that 
for a non-slip solid wall. A phenomenological slip boundary condition was then pro-
posed. The velocity gradient at the interface scales with the slip velocity, i.e., 
�u∕�n =

�
�BJ

�√
K
��

us − uD
�
 , where �BJ, K, us, and uD represent the dimensionless 

slip coefficient, permeability, slip velocity, and Darcy velocity, respectively. The dimen-
sionless slip coefficient �BJ is considered a key parameter to assign the accurate slip 
boundary condition at the interface so that the flow field in the fluid channel can be 
accurately predicted.

However, there is no common agreement in studies on how to choose the slip coefficient 
as well as its dependence on both solid volume fraction and porous architecture. For exam-
ple, as reported by Beavers and Joseph (1967), the dimensionless slip coefficient increases 
with the porosity of the foametal block. James and Davis (2001), however, found that the 
dimensionless slip coefficient increases as the porosity decreases in their study of the pla-
nar Couette flow and Poiseuille flow in a channel partially filled with arrays of cylinders. 
Liu and Prosperetti (2011) numerically investigated three-dimensional flow in a channel 
bounded by one (for Couette flow) and two (for Poiseuille flow) parallel porous walls mod-
eled by packed spheres in a simple cubic (SC) arrangement. They concluded that the slip 
coefficient increases with the porosity, and the pressure-driven flow yields a different slip 
coefficient value with the shear flow. Hsu and Cheng (1991) studied the Couette flow in 
a channel over a semi-infinite porous medium composed of packed spheres. By match-
ing the slip velocity with that from Beavers and Joseph (1967), the slip coefficient was 
found to decrease with the porosity, which is consistent with the results from James and 
Davis (2001) and opposite to those from Beavers and Joseph (1967) and Liu and Prosper-
etti (2011). Sahraoui and Kaviany (1992) examined the hydrodynamic boundary condition 
at the interface between a porous and plain medium by direct simulations. They concluded 
that the slip coefficient is a function of porous structure and is dependent on the flow direc-
tion, Reynolds number, extent of the plain medium, and non-uniformities in the arrange-
ment of the surface particles.
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In this study, we focus on flows over porous media, which are composed of packed spheres 
with various packing structures, e.g., simple cubic (SC), face-centered cubic (FCC), and body-
centered cubic (BCC). The slip coefficient is obtained via Navier-slip length by matching the 
flow rate over the actual packed spheres from the direct simulation and that over an effective 
smooth surface using the Navier-slip boundary condition from analytic solution. The accuracy 
of the slip length is validated by comparing the velocity field for the flows over the actual 
porous media and effective smooth surface. Finally, the effective smooth surface with the slip 
length is employed to describe two example flow problems: a stick–slip–stick flow and chan-
nel flow bounded by porous walls. The present work might facilitate in providing an efficient 
framework to investigate the slip issue in porous media composed of packed spheres due to its 
low computational cost.

This article is organized as follows. First, we derive the expression of slip length following 
the original flow rate matching method by Beavers and Joseph (1967). Then, we discuss the 
scaling behavior of the slip length as a function of the relative free slip area. The accuracy of 
the slip length is validated by comparing the velocity field for an oblique flow over the actual 
sphere-packed porous media from the direct simulation and that over an effective smooth sur-
face using the Navier-slip boundary condition. Finally, the effective smooth surface with the 
slip length is applied to solve two classical flow problems: a stick–slip–stick flow and channel 
flow. In both cases, the flow rates are increased owing to the presence of the corrugated archi-
tecture at the porous interface.

Before deriving the expression of slip length, we have some remarks:

(1) In this study, we focus on an idealized porous medium model composed of arrays of 
spheres, which are packed in strictly regular structures (e.g., SC, BCC, and FCC). The 
spheres are assumed to be fixed such that it could be regarded as a granular porous 
medium or a filter cake (Sangani and Behl 1989).

(2) The estimation of slip length depends on the choice of interface location. In this study, 
we choose the plane tangent to the outer edges of the spheres in the first row, as what 
have done in numerous studies, for example, Sangani and Behl (1989), Sahraoui and 
Kaviany (1992), James and Davis (2001), and Liu and Prosperetti (2011). This choice 
is considered most logical due to its first contact with the flow (James and Davis 2001).

2  Modeling

2.1  Expression of the Slip Length with the Flow Rate

In this section, we present the derivation of the slip length for a pressure-driven flow through 
and over a porous medium composed of packed spheres as shown in Fig. 1. To reduce the 
computational cost and clearly describe this problem, a unit flow structure is selected, as 
shown in Fig. 2a. The entire domain can be decomposed into two regions: the pure fluid chan-
nel (0 < z < H) and porous region (z < 0) . A periodic boundary condition with and without a 
pressure drop (Δp) is assigned in the x- and y-directions, respectively. Neglecting the inertia, 
the flow in the entire domain can be described by the Stokes equation

where p, �, and u denote the pressure, fluid viscosity, and velocity vector, respectively. 
Stokes assumption is reasonable in this work since the dependence of the slip length on the 

(1)∇p = �∇2
u,
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Reynolds number is negligible as far as the flow is laminar (Jang et al. 2016). According to 
Beavers and Joseph (1967), when a fluid flows over porous media, there appears a nonzero 
slip velocity, scaling with the velocity gradient at the interface. In this regard, a fictitious 
smooth surface (Fig.  2b) with a slip boundary condition can be proposed to replace the 
actual porous media of a complicated architecture. For one-dimensional pressure-driven 
flow in the x-direction, the Stokes equation (Eq. 1) becomes dp

/
dx = ��2u

/
�z2 . The top 

Fig. 1  A schematic description 
of a pressure-driven flow through 
and over a porous medium com-
posed of packed spheres

Fig. 2  The computational model 
for a pressure-driven flow over a 
three-dimensional porous media 
of packed spheres. a A model 
for simulation with an actual 
complex microstructure; b the 
corresponding flow model for the 
effective Navier-slip boundary 
condition with a fictitious smooth 
surface
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surface is considered a no-slip wall, i.e., u = 0 at z = H, and at the interface, it yields the 
slip boundary condition by Beavers and Joseph (1967)

where � is the slip coefficient; uD is the Darcy velocity, which can be obtained from Dar-
cy’s law, i.e., uD = −(K∕�) ⋅ dp∕dx . According to the governing equation and the bound-
ary conditions given above, the solution in the fluid channel is

Then, the flow rate per unit length Qslip through the channel is obtained by integrating 
the velocity solution (Eq. 3) along the channel height, which is enhanced compared to that 
with two no-slip walls

where Qno-slip is the flow rate with both walls subjected to no slip and Q∗ is the flow rate 
ratio. Replacing Qslip by actual flow rate over porous media (Fig. 2a), the slip coefficient 
can be obtained

The Beavers–Joseph slip boundary condition (Eq.  2) can be rewritten as 
us = (1∕�)du∕dz + uD . According to Saffman (1971), neglecting the Darcy velocity uD , 
the remaining part of this equation, i.e., Qno-slip suffices to determine the slip coefficient, 
which is correct to the order O

�√
K
�
 , considering 1∕� =

√
K
�
�BJ . On the other hand, the 

Navier-slip boundary condition indicates that the slip velocity at the interface is propor-
tional to the velocity gradient, i.e., us = bdu∕dz , with b being the slip length. By compar-
ing the simplified form of the Beavers–Joseph slip condition by Saffman (1971) with the 
Navier-slip boundary condition, the slip length in the Navier-slip description can be 
approximated as the reciprocal of the slip coefficient, i.e., b = 1∕� . Then, according to 
Eq. (5), the expression of slip length is

2.2  Estimation of the Permeability

As indicated in Eq. (6), to evaluate the slip length correctly, the permeability K should be 
quantified accurately. Before investigating the slip length characterization, the permeability 
estimation is performed. In this study, the porous media are modeled by packed spheres 
and we consider three classical packing architectures: the simple cubic (SC), face-centered 
cubic (FCC), and body-centered cubic (BCC), as shown in Fig. 3a–c. According to Dar-
cy’s law, the permeability can be expressed as K = −uD(�∕(dp∕dx)) and we computed the 
permeability numerically by solving the Stokes flow problem through a three-dimensional 

(2)
du

dz
= �

(
us − uD

)
, z = 0,

(3)u = −
1

2�

dp

dx

(
H2 + 2K�H

1 + �H
−

(
2K� − �H2

1 + �H

)
z − z2

)
.

(4)Q∗ =
Qslip

Qno-slip

=

(
1 +

3

1 + �H

(
1 +

2�K

H

))
, Qno-slip = −

H3

12�

dp

dx
,

(5)� =
4 − Q∗

(Q∗ − 1)H − 6K∕H
.

(6)b =
(Q∗ − 1)H − 6K∕H

4 − Q∗
.
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unit cell with a periodic boundary condition subjected to a given pressure drop in the 
flow direction. A similar method for computing the permeability in a two-dimensional bi-
periodic unit cell is shown in previous studies, such as Lu et  al. (2017) and Wang and 
Hwang (2008). COMSOL 5.2 with a quadratic velocity and linear pressure interpolations 
is employed to implement the simulations in this work. When estimating the permeability, 
the entire unit cell is discretized by three-dimensional free tetrahedral meshes. Although 
not presented, we tested the accuracy of the solution with the mesh refinement and evalu-
ated the convergence to ensure the accuracy in estimating the permeability and later the 
slip lengths. Figure 4 shows the normalized permeabilities (normalized by the square of the 
sphere radius R2 ) of three different porous architectures (SC, FCC, and BCC) for a wide 
range of solid volume fractions along with the prediction by Happel (1958) for compari-
son. According to Happel (1958), the empirical equation to estimate the normalized per-
meability for porous media composed of packed spheres can be expressed as

where �s is the solid volume fraction. A minor discrepancy is shown between the results 
by Happel (1958) and those in this study for the densely and lightly packed structures. 
However, there was approximately a 24.5% discrepancy for the FCC structure when the 
porous media are moderately packed, which implies the empirical equation from Happel 

(7)K

R2
=

3 − 3�
1∕ 3
s + 3�

5∕ 3
s − 2�2

s

9�s + 6�
8∕ 3
s

,

Fig. 3  Three unit porous structures of spheres with the same solid volume fraction 
(
�
s
= 0.3

)
 . a The simple 

cubic (SC), with the dimensionless free surface area A∗ = 0.458 ; b the face-centered cubic (FCC), with 
A
∗ = 0.570 ; c the body-centered cubic (BCC), with A∗ = 0.659 ; d free slip area for the SC and BCC pack-

ing structures; e free slip area for the FCC packing structure
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(1958) may not be appropriate. In addition, the Carman–Kozeny model (1997) is widely 
used to characterize the correlation between the permeability and solid volume fraction. 
This model can be expressed as

where A is the Carman–Kozeny constant. It can be decomposed into two factors such that 
A = a�b

s
 , with the contribution from the porous architecture (a) and that from the solid 

volume fraction 
(
�b
s

)
 . The parameters a and b , obtained by fitting the computational results 

using the least squares method, are 0.0343 and 0.610 for the SC structure, 0.0320 and 
0.590 for the FCC structure, and 0.0323 and 0.598 for the BCC structure. In Fig. 4, fitted 
curves for each packing structure from the Carman–Kozeny prediction are also shown. The 
slip length in a closed form can then be accurately characterized, with the permeabilities 
estimated above.

2.3  Slip Length and Its Universal Behavior

After obtaining the permeability, a direct simulation for the flow over the actual packed 
spheres (Fig. 2a) is performed to determine the slip length. The direct flow simulation has 
been performed by COMSOL 5.2 with quadratic velocity and linear pressure interpola-
tions. As reported by James and Davis (2001), the slip coefficient/length depends nearly on 
the outmost microstructure of the interface. Thus, five layers of the porous structure are con-
sidered adequate in this study. A periodic boundary condition with and without a pressure 
drop is assigned in the x-and y-directions, respectively. The flow rate Qslip through the channel 
from the direct simulation is substituted into Eq. (4) to obtain the flow rate ratio Q∗ , which 

(8)K

R2
= A

(
1 − �s

)3
�2
s

,

Fig. 4  The normalized perme-
ability as a function of the solid 
volume fraction for three dif-
ferent porous architectures (SC, 
FCC, and BCC) along with the 
empirical prediction from Hap-
pel (1958) and fitted Carman–
Kozeny constants
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is employed to compute the value of the slip length according to Eq. (6). Figure 5 shows the 
dimensionless slip length b∗ = b∕R , with R being the radius of a sphere, as a function of the 
solid volume fraction with two dimensionless channel heights (H∕R = 16 and 32) for three 
different porous architectures. For each packing structure, a minor discrepancy of the slip 
length is shown with different channel heights, which is consistent with the conclusion in the 
authors’ previous work (Lu et al. 2017) for the two-dimensional fibrous porous media such 
that the dependence of slip length on flow channel height is nearly negligible for sufficiently 
large channel height (H∕R >> O(1)) . The dimensionless slip lengths are found to decrease as 
the solid volume fractions increase. For the same solid volume fractions, the BCC structure 
yields the largest value of the slip length, while the SC structure shows the smallest one. To 
explain this, a measure of the relative free slip area (A∗) is introduced, and as will be shown, it 
can be regarded as a characteristic parameter representing the magnitude of the interfacial slip. 
As shown in Fig. 3d, e, the relative free slip area is defined as

where ‘1’ denotes the area ratio of the top surface for a unit porous structure, i.e., 
1 = L2

/
L2 ; N is the number of spheres within the top surface. For the SC and BCC struc-

tures, the value of N is 1, and for FCC structure, N is 2. In fact, Qno-slip is the ratio between 
the free slip area (area with a pattern in Fig. 3d, e) and unit surface area 

(
L2
)
 . For packed 

spheres, the correlation between Qno-slip and the solid volume fraction �s can be expressed 
as Qno-slip , with n = 1, 2, and 4 for the SC, BCC, and FCC, respectively. Figure 6 shows 
the dimensionless slip lengths as a function of the relative free slip area for different chan-
nel heights (H∕R = 16 and 32) and various porous architectures. For the dimensionless 
channel height of 32 (H∕R = 32) , the fitted curve can be provided as: b∗ = c(A∗)e + � . The 
reference slip � represents the slip length when the spheres are completely packed (two 

(9)A∗ = 1 −
N�R2

L2
,

Fig. 5  The dimensionless slip 
length as a function of the solid 
volume fraction for three differ-
ent porous architectures with two 
different dimensionless channel 
heights ( H∕R = 16 and 32)
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closest spheres in contact with each other). The exponent e indicates how fast the slip 
length increases with the relative free slip area and c is a constant. The fitted results are

All the data of the dimensionless slip lengths along with the relative free slip areas 
for the three different packing structures are listed in Table 1. One can observe that, for 
the same solid volume fraction, the BCC structure yields the largest relative free slip 

(10)b∗ =

⎧
⎪⎨⎪⎩

0.725A∗2.906 + 0.210, SC

0.922A∗3.473 + 0.223, FCC

1.228A∗4.959 + 0.273, BCC

.

Fig. 6  The dimensionless slip 
length as a function of the rela-
tive free slip area for different 
porous architectures along with 
a universal fitted ‘master’ curve. 
The absolute error bars are also 
presented

Table 1  The dimensionless slip length (b∗) and dimensionless slip coefficient 
(
�
BJ

)
 along with the relative 

free slip area (A∗) as a function of the solid volume fraction for three different porous architectures (SC, 
FCC, and BCC)

�
s

SC FCC BCC

K
/
R
2 A

∗
b
∗ �

BJ K
/
R
2 A

∗
b
∗ �

BJ K
/
R
2 A

∗
b
∗ �

BJ

0.1 0.613 0.740 0.513 1.526 0.598 0.793 0.640 1.209 0.595 0.836 0.780 0.988
0.2 0.165 0.587 0.360 1.129 0.160 0.672 0.443 0.901 0.159 0.740 0.539 0.740
0.3 0.062 0.458 0.288 0.862 0.059 0.570 0.355 0.683 0.059 0.659 0.431 0.563
0.4 0.026 0.344 0.247 0.657 0.024 0.479 0.303 0.507 0.024 0.587 0.367 0.425
0.5 0.012 0.238 0.218 0.505 0.009 0.396 0.267 0.364 0.010 0.520 0.324 0.312
0.6 – – – – 0.004 0.317 0.241 0.246 0.004 0.458 0.291 0.223
0.7 – – – – 0.001 0.243 0.221 0.154 – – – –
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area, which might be responsible for the largest slip length with the largest reference 
slip � and fastest exponent e , see Eq. (10).

It is interesting to observe that all the data could be fitted into a single master curve in 
spite of the different structures. Figure 6 shows a universal scaling behavior for the slip 
length, and a master curve can be expressed as

At the same time, the absolute error bars have been also presented in Fig. 6. From now 
on, one can readily obtain the value of the slip length for porous media of packed spheres 
with Eq. (11), once the relative free slip area or the solid volume fraction is given. In addi-
tion, with the correlation between the dimensionless slip coefficient �BJ and dimensionless 
slip length b∗ , i.e., �BJ = b∗

√
K
�
R , the value of �BJ can also be obtained according to 

Eqs. (8) and (11). Figure 7 shows the dimensionless slip coefficients as a function of the 
solid volume fraction for different porous architectures along with the result for the SC 
structure by Liu and Prosperetti (2011) for comparison. For various porous architectures, 
the dimensionless slip coefficients are found to decrease with solid volume fraction, which 
agrees with Beavers and Joseph (1967) and Liu and Prosperetti (2011). The SC structure 
has the largest value of the slip coefficient for the same solid volume fraction, whereas the 
FCC structure yields the smallest one. There is a good agreement between the estimation 
of the slip coefficients for the SC structure by Liu and Prosperetti (2011) and that obtained 
in this study. A maximum discrepancy of approximately 6% appears, when the solid vol-
ume fraction is around 0.155. The dimensionless slip coefficients for the three packing 
structures are also listed in Table 1.

To understand the effect of a small perturbation of the sphere position on the slip 
length, a sphere located at the center of a unit cubic for the BCC structure has been 
moved with a distance Δs in both the horizontal (leftward shift) and vertical (upward or 

(11)b∗ = A∗4 + 0.23.

Fig. 7  The dimensionless slip 
coefficients as a function of 
the solid volume fraction for 
different porous architectures. 
(The dimensionless slip coef-
ficients for the simple cubic (SC) 
structure by Liu and Prosperetti 
(2011) are also presented for 
comparison)
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downward shift) directions, see Fig. 8. The solid volume fraction �s is set 0.2, and Δs∕L 
is 0.125. It has been found that the values of the dimensionless slip length are 0.538 for 
the leftward case, 0.535 for the upward case, and 0.540 for the downward case, respec-
tively. In comparison with the original value of the slip length (b∗ = 0.539) , in Table 1, 
the slip length for the horizontal and downward shifts remains unchanged. Only the case 
with upward move yields a slightly reduction in the slip length, due to decrease of free 
fluid volume beneath the interface. It is noted that even for the upward shift, the relative 
error of the dimensionless slip length is found around 0.74%, which could be considered 
neglected. Therefore, the fitted model proposed in the present work might be still appli-
cable with the presence of a small perturbation of the sphere position.

Before moving to the next section, we would like to mention that the idea correlating 
the slip length/coefficient with the geometric parameter at the interface can be extended 
to more general cases, e.g., the complete randomly packed spheres. The average dimen-
sionless free surface area can be obtained by seeking the ratios of the free surface area 
to the total surface area among a large amount of cross sections beneath the interface. It 
is expected that, for a given solid volume fraction, the final value of the average dimen-
sionless free surface area will show statistically complicated behaviors from numerous 
samples of randomly packed spheres. Therefore, the slip length might be expressed in 
terms of the average dimensionless free surface area. Besides, in the case of randomly 
packed spheres, some details still need further considerations, for example, the choice 
of the position of the interface as well as the optimal statistical methods to be applied. 
In addition, the measurement of the local velocity fields around the interface for the ran-
domly packed spheres and the work by Saleh et al. (1993), for example, may serve as a 
reliable reference to validate the accuracy of the theoretical and numerical results.

Fig. 8  The effect of a minor ran-
domness of the sphere position 
on the slip length for the BCC 
structure. The solid volume frac-
tion �

s
 is 0.2, and the movement 

distance of the central sphere 
in both the horizontal (leftward 
shift) and vertical (upward or 
downward shift) directions 
Δs∕L = 0.125
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3  Verification of the Slip Length and Example Flow Problems

3.1  Verification of the Slip Length

In order to evaluate the accuracy of the slip length, an oblique flow problem over the 
porous media with SC structure is solved, in which the local coordinate (xy) is not con-
forming with the global coordinate system (XY) as shown in Fig. 9a. A pressure drop is 
assigned in the x-direction. The local tensor form of the Navier-slip condition at the inter-
face can be expressed as

where b is the slip length tensor. As the porous structure is isotropic and thereby the slip 
length tensor is b = diag(b, b) . Then, each component of the slip velocity vector at the 
interface can be expressed in terms of the velocity gradient with the slip length

For this flow problem shown in Fig. 9, the porous structure is chosen as SC with the 
solid volume fraction �s = 0.3 and the alignment angle � = 30◦ . The width of the peri-
odic domain is 1 (mm), and the radius of the sphere R is 415 (µm). The height of the 
flow channel above the spheres is set as H = 32R . According to Jang et al. (2016), flow 
characteristics within a groove, which is analogous to the flow on the porous surface, do 

(12)uslip = b ⋅ (n ⋅ ∇u),

(13)u = b
�u

�z
, v = b

�v

�z
.

Fig. 9  The computational model 
for an oblique flow over a three-
dimensional porous medium of 
packed spheres. a A model for 
the direct simulation with the 
actual complex microstructure; b 
the corresponding flow model for 
the effective Navier-slip bound-
ary condition with a fictitious 
smooth surface. Local coordinate 
system (xy) is not consistent with 
the global coordinate system 
(XY)
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not change with respect to the Reynolds number in the Laminar regime. Thus, neglecting 
the inertia effect owing to the small scale of the flow problem, a full three-dimensional 
direct simulation is implemented to solve the Stokes flow problem over the porous media 
composed of packed spheres. With the geometry parameters given above, the dimension-
less slip length is obtained from Eq. (11) or Table 1, which is 0.288 and thereby the slip 
length b = b∗ ⋅ R = 1.2 × 10−4 (m). The corresponding simulation with an effective surface 
and a slip boundary condition expressed by Eq. (13) is then conducted. Velocity profiles 
within fluid channel in each component from the direct simulation (Fig. 9a) and from the 
corresponding simulation with effective surface (Fig. 9b) are shown in Fig. 10. One can 
observe that the velocity profiles in each component from the direct simulation agree well 
with those from the simplified simulation with an effective smooth surface. The maximum 
relative errors are found to be 1.84% and 1.83% in the x- and y-component, respectively. In 
addition, at the interface (H∕R = 0) , the presence of slip velocity around 3.1% and 1.79% 
of the maximum velocity in the x- and y-components can be identified. The slip veloc-
ity in the x-component is approximately 1.73 times of that in the y-component due to the 
prescribed alignment angle (� = 30◦) . Having validated the accuracy of the slip length, in 
next section, the Navier-slip condition with the slip length will be employed to solve two 
complicated flow problems.

3.2  Stick–Slip–Stick Flow and Channel Flow Problems

In this section, two practical example flow problems are solved: stick–slip–stick flow and 
pressure-driven channel flow with a rectangular cross section. The first flow problem is 
the stick–slip–stick flow problem as shown in Fig. 11. A direct simulation (Fig. 11a) is 
first conducted for a pressure-driven flow over two aligned no-slip solid walls, which are 

Fig. 10  The velocity profiles in 
each component within the fluid 
channel from both the direct 
simulation and from the simula-
tion with effective slip surface
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connected by a porous surface composed of packed spheres. A periodic boundary con-
dition with and without a pressure drop is assigned in the x- and y-directions, respec-
tively. All the remaining boundaries are subjected to no-slip walls. The porous medium 
is composed of eight layers of spheres, which are packed in the SC structure. The sphere 
size and solid volume fraction are chosen to be the same as those in the flat channel 
flow problem in Sect. 3.1. The length (x-direction) and the thickness (y-direction) of the 
entire computational domain are 6 (mm) and 0.1 (mm), respectively. For an effective 
simulation (Fig.  11b), the actual porous architecture is replaced by a smooth surface 
subjected to the Navier-slip boundary condition: u = b�u∕�z , with the slip length b of 
1.2 × 10−4 (m). COMSOL 5.2 with the quadratic velocity and linear pressure interpola-
tions is employed to implement the simulations. Although not presented here, we tested 
the accuracy of the solution with the mesh refinement and evaluated the convergence. 
Increase of the flow rate through the channel is found in both the direct and effective 
simulations compared to that subjected to a complete no-slip solid bottom wall. The 
flow rate ratios 

(
Q∗ = Qslip

/
Qno-slip

)
 are found to be 1.0117 and 1.0115 for the direct and 

the effective simulations, respectively.

Fig. 11  A schematic description of the stick–slip–stick flow problem: a the computational domain for flow 
over the actual porous media composed of packed spheres; b the computational domain for flow over an 
effective smooth surface with the Navier-slip boundary condition
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Figure 12 shows the velocity profiles along a centerline located in the bottom surface 
(Fig. 11) from both the direct simulation and the effective simulation with the Navier-slip 
condition. In the upstream region, the velocity from the direct simulation is zero owing 
to the no-slip property of the solid wall. Then, the velocity increases sharply and there 
is a fluctuation between 3.9 and 4.9% of the maximum velocity caused by the periodic 
structure of porous media at the interface. The velocity decreases to zero along the down-
stream region. The velocity from the simulation with an effective smooth surface is found 
to be close to the average fluctuation velocity from the direct simulation, and the mean 
velocity, which is computed from the data of the direct simulation over the porous surface, 
is approximately 98.6% of that in the effective simulation. The result shows that the slip 
boundary condition with slip length reproduces flow characteristics accurately.

The second example flow problem is a rectangular channel flow bounded by 4-lay-
ers porous walls attached to the left, right, and top surfaces and one no-slip solid wall on 
the bottom, as shown in Fig. 13. The local porous architecture is chosen to be the same 
as that applied in the stick–slip–stick flow problem. The width of the channel (excluding 
the porous layers) is 1.917 (mm), and the height is 1.958 (mm). For the direct simula-
tion (Fig. 13a), a periodic boundary condition with and without a pressure drop has been 
assigned in the y- and x-directions, respectively. A symmetry boundary condition is defined 
on the top porous surface, whereas the bottom surface yields a no-slip wall. For the simu-
lation with effective surfaces (Fig. 13b), the porous structure is replaced by three smooth 
surfaces with the Navier-slip boundary conditions, in which the slip length is 1.2 × 10−4 
(m). Before quantitatively validating the accuracy of the Navier-slip boundary condition 
with the slip length, the effect of the number of porous layers on the flow rate through the 
channel and on the average slip velocity at the interface are investigated first. As shown 
in Fig. 14, the flow rate through the channel is enhanced compared to that if all the chan-
nel walls were impermeable and the flow rate ratio is maintained by a value of approxi-
mately 1.038 (Q∗ = 1.038) , as the number of the porous layers increases from one to four. 

Fig. 12  The velocity profile 
along a centerline located on the 
bottom surface for the ‘stick–
slip–stick’ flow problem (Fig. 11) 
from both the direct simulation 
and the simulation of effective 
slip surface. The mean velocity 
from the direct simulation is also 
presented for comparison
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The averaged dimensionless slip velocity defined as v∗
s
= vs

/
vmax on all the three perme-

able surfaces yields the same value and is independent of the number of the layers, which 
implies that the interfacial slip is nearly affected by the outmost layer of the spheres.

Figure  15 shows the slip velocity profiles on the top [z = 1.958 (mm)] and left 
[x = 0 (mm)] surfaces from the direct simulation as well as from the simulation with effec-
tive surfaces (Fig. 13). As expected, the oscillation occurs from the direct simulation owing 

Fig. 13  A schematic description of the rectangular channel flow problem: a a direct simulation for the chan-
nel flow bounded by porous walls adjacent to the left, right, and top surfaces; b the corresponding effective 
simulation for the channel flow bounded by three fictitious smooth surfaces (on the left, right, and top sur-
faces) with the Navier-slip boundary condition

Fig. 14  Flow rates and the aver-
age slip velocity at each surface 
as a function of the number of 
porous layer
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to the presence of periodic architectures of the packed spheres at the interface. Velocities 
from the simulation with effective surfaces are again located at the corresponding aver-
age positions of the oscillations, verifying that the applied effective smooth surfaces with 
the slip lengths are accurate. The maximum slip velocities on both surfaces (top and left) 
appear in the central regions. For the left surface, the velocity starts at zero due to the 
no-slip boundary condition of the solid bottom surface of the channel, whereas the top 
surface shows approximately 0.34% and 0.13% of the maximum velocity even at the top 
corners from both simulations, respectively. Finally, the velocity field across the channel is 
evaluated. The velocity distributions along the vertical line (marked as) and the horizontal 
line (marked as l2 ), see Fig. 13, are presented to validate the accuracy of the Navier-slip 
boundary condition with the slip length. As shown in Fig. 16, velocities from the effective 
simulation for the two lines agree well with those from the direct simulation. A small dis-
crepancy appears only within one radius distance from the interface (x∕R < 1, z∕R < 1) . 
The predictions of the slip velocity at the interface are 2.1% and 2.8% of the maximum 
velocity from the direct and effective simulations, respectively. The effective surfaces with 
the Navier-slip length are found to accurately reproduce both the local slip velocity distri-
butions on the porous surfaces and the macroscopic velocity field across the channel.

4  Conclusions

In this study, we solved the interfacial slip flow problem over porous media composed of 
spheres with various packing structures, such as SC, FCC, and BCC. The slip length was 
obtained by matching the flow rate for the flow over the actual packed spheres from the 
direct simulation and that over an effective smooth surface using the Navier-slip boundary 
condition. The accuracy of the slip length was validated by comparing the flow field of an 
oblique channel flow over the actual porous media and the effective smooth surface. The 

Fig. 15  The average slip velocity 
profiles on the top and right 
surfaces (Fig. 13) from both the 
direct simulation over actual 
porous media of packed spheres 
and the simulation with fictitious 
smooth surface
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slip length is best described as a function of free slip area, rather than conventional vari-
ables such as solid volume fraction and packing structure, with the error less than 7.5%. 
Finally, the effective smooth surface with the slip length was applied to describe two exam-
ple flow problems: a stick–slip–stick flow and channel flow. The flow rate increased in both 
cases owing to the presence of the corrugated surface at the interface. The average slip 
velocity at the interface as well as the velocity profile within the entire domain was accu-
rately reproduced using the effective Navier-slip boundary condition.

In Part 2, effective slip length of the Navier-slip condition will be employed to char-
acterize optimal values of the effective viscosity and stress jump coefficient in the 
Stokes–Brinkman approach (one with effective Brinkman viscosity and the other with the 
stress jump coefficient in the Ochoa-Tapia/Whitaker modeling), which can be applied for 
industrial and natural flows in dual-scale porous media in predicting flow solutions inside 
and outside the porous media.
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