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ABSTRACT
Optimal values of the effective viscosity and the stress jump coefficient in the Stokes-Brinkman model with continuous and jump stress
conditions, respectively, have been accurately characterized and then applied to solve various two-dimensional transverse dual-scale flows in
fibrous porous media. In this work, the effective viscosity and the stress jump coefficient are determined such that the interfacial slip velocity
can be identified to that in the effective Navier-slip description and therefore it naturally facilitates the accurate prediction of the slip velocity
and its gradient (stress) at the fluid/porous interface along with the velocity fields in both the porous media and the pure fluid domain. With
these optimal values of the effective viscosity and the stress jump coefficient, the Stokes-Brinkman coupling can be employed to accurately
describe the dual-scale porous flow at low computational cost, which may provide an effective computational framework in investigating
particle deposition/filtration and void transports within composites.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5098094., s

I. INTRODUCTION

Viscous incompressible flows through and over the porous
media can be encountered widely in nature and in industries:
contaminant transport or flooding with the groundwater flow,1,2

enhanced oil recovery,3,4 enhanced dispersion performance,5,6 and
the flow of resins in-between the porous fiber tows or fiber bun-
dles in liquid composite molding (LCM).7–9 Among others, flows
in-between fiber tows are of particular interest in the present work,
considering voids transport through a porous channel10,11 or par-
ticle deposition on fiber tows for advanced functional composites
materials.12 In LCM, the spacing between the fiber tows is on the
scale of millimeters, whereas the spacing between the fibers within a
fiber bundle is on the order of microns, creating a dual-scale porous
medium. The fluid flow in-between the fiber tows (inter-tow flow)
needs to be coupled to the flow inside the fiber tows (intra-tow

flow),12 which yields additional complexities along with the presence
of the velocity slip around the tow interface and sophisticated stress
conditions.

It is widely accepted that Darcy’s law can be applied to describe
the macroscopic flow within the porous media. In describing a flow
around the porous media, however, the velocity at the interface of
the fluid/porous media has been found to be several orders greater
than the Darcy velocity, which implies the existence of a boundary
layer adjacent to the interface, in which the fluid velocity decreases
rapidly from the interfacial slip velocity to the Darcy velocity. How-
ever, Darcy’s equation is not compatible with the presence of such
a boundary layer in a porous medium due to the absence of the vis-
cous stress. To account for the boundary layer flow within porous
media in close proximity of the interface, Brinkman13 extended the
traditional form of Darcy’s law by adding the viscous stress term
along with a pseudo viscosity, the so-called effective viscosity, in
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analogy to the viscosity behavior of a dense swarm of particles (parti-
cle suspensions). The additional viscous stress, called the Brinkman
term, accounts for viscous dissipation within the boundary layer.
Brinkman’s extension of Darcy’s law is preferred mathematically
and physically to the original Darcy’s law in examining boundary
layer effects.14,15

In case of slow flows over small scale porous architectures in the
LCM process, flows within the pure fluid domain can be described by
the Stokes equation, while flow within the porous media including
the boundary layer can be expressed by the Brinkman equation. The
combination of the Stokes equation and the Brinkman equation, the
so-called Stokes-Brinkman coupling (S-B coupling), has been widely
employed in analyses and numerical simulations of dual-scale flows
through and over the fibrous porous media.12,16–18 Assuming that a
fluid is Newtonian with negligible inertia, the Stokes equation in the
pure fluid region can be expressed as

−∇pf + μ∇2uf = 0. (1)

The subscript “f ” denotes “fluid” and μ is the fluid viscosity. Flow
in the porous media with viscous dissipation is described by the
Brinkman equation

−∇pp + μe∇2up −
μ
K
up = 0. (2)

The subscript “p” denotes the “porous media,” μe is the effective
viscosity, and K is the permeability of the porous media. By intro-
ducing a scalar parameter λ, which takes the value of zero in the fluid
domain and one in the porous media, flows in both regions can be
described by a single equation, i.e., the Stokes-Brinkman coupling,

−∇p + μ∇2u + λ((μe − μ)∇2u − μ
K
u) = 0. (3)

Since the incompressibility is valid everywhere, the continuity equa-
tion, i.e.,∇⋅u = 0, completes the governing equation set.

In the Stokes-Brinkman coupling for flows in dual-scale porous
media, a critical issue arises in selecting the effective viscosity (μe)
in the viscous dissipation term of the Brinkman equation [Eq. (2)].
There seem to be some requirements for the optimal choice of the
effective viscosity, and they are described in Fig. 1. The effective vis-
cosity in the Stokes-Brinkman coupling must be a function of the

porous architecture, and once determined, it needs to facilitate to
represent the velocity profile not only in the fluid region (see “1” in
Fig. 1) but also in the porous media including the boundary layer
(“3” and “4”). Moreover, the slip velocity at the interface has to be
correctly predicted (“2”) along with the fluid stress (velocity gradi-
ent) there (“5”). In addition, a seepage flow within the porous media
and a partial velocity slip at the interface need to be described simul-
taneously and correctly, if the upstream flow is not parallel to the
interface of the porous media.

A common agreement has not been made in the literature on
this critical issue how to choose the effective viscosity and it is still
questionable although the effective viscosity is often assumed to be
identical to the fluid viscosity for simplicity.19–21 In the original work
of Brinkman,13 the effective viscosity was identified to the effec-
tive viscosity of particle suspensions considering that the flow in
the porous media is analogous to the swarm of particles such that
μe/μ = 1 + 2.5ϕs in a dilute regime with a low solid volume fraction
ϕs. Later Breugem17 and Kołodziej et al.22 doubted this choice since
particles move with the fluid in case of particle suspension, while
the porous skeleton is fixed in the flow through the porous media.
Koplik et al.23 derived the relative effective viscosity theoretically
from the effective energy dissipation rate around a sphere embed-
ded in a collection of dilute spherical grains and proposed the rela-
tionship μe/μ = 1 − 0.5ϕs. Kim and Russel24 predicted the effective
viscosity from the bulk stress using the volume averaging method
and reported that the effective viscosity is greater than the pure
fluid viscosity. Starov and Zhdanov25 derived the effective viscos-
ity of porous media composed of equally sized spherical parti-
cles, and the effective viscosity in their work was expressed as
μe/μ = 1/(1 − ϕs)5/2.

Another important issue in the Stokes-Brinkman coupling is
the boundary condition at the interface, which is usually defined
in terms of the slip velocity and the traction. The velocity continu-
ity must be satisfied, whereas either stress continuity or stress jump
can be employed in the modeling of the Stokes-Brinkman approach.
Based on the nonlocal volume-averaging technique, the stress jump
boundary condition at the fluid/porous interface was first proposed
by Ochoa-Tapia and Whitaker (OT-W model)26,27 such that

n ⋅ (σp − σf ) =
μ√
K
T ⋅ u, T = βI. (4)

FIG. 1. The transverse flow over (a) a fibrous porous
medium and over (b) a fictitious porous region with the
effective slip in the view of the Stokes-Brinkman coupling.
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The symbols n, σ, T, I, and β denote the outward normal vector
at the interface, the total stress tensor, the stress jump tensor, the
identity tensor, and the stress jump coefficient. As recommended in
their works, the effective viscosity for the stress jump condition in
the Brinkman equation is fixed as μe/μ = 1/(1 − ϕs) and the stress
jump coefficient tensor T is simplified as an isotropic tensor βI, i.e.,
the stress discontinuity is assumed to be present in the tangential
direction only. Then, there appears an adjustable scalar parameter
β, the stress jump coefficient. In case of the continuous stress, the
value of the stress jump coefficient takes zero (β = 0). Similar to
the effective viscosity, determination of the stress jump coefficient
in the stress jump condition is also a pivotal subject. Ochoa-Tapia
and Whitaker26,27 reported that the stress jump coefficient ranges
from −1 to 1.47, from the flow rate matching with the experimental
results of Beavers and Joseph.28 However, Angot29 conducted math-
ematical analysis and reported that the well-posedness of the Stokes-
Brinkman problem requires the stress jump coefficient being non-
negative. Goyeau et al.30 introduced a continuously varying hetero-
geneous transition layer between the homogenized fluid and porous
regions and derived the stress jump coefficient in terms of the vari-
ations of the velocity and effective properties of the transition layer.
Later Valdes-Parada and co-authors31,32 theoretically analyzed the
closure problems and provided an explicit expression for the stress
jump coefficient as a function of the porosity independent of the
characteristics of the microstructure. Tan et al.33 obtained the effec-
tive viscosity and the stress jump coefficient by matching the flow
rate for a channel flow over the fibrous porous media from a direct
simulation with that from the analytic solutions. They reported that
the effective viscosity ratio and the stress jump coefficient are from
1.2 to 14.4 and 0.3 to −2.2, respectively, for moderate and high
porosities.

In authors’ previous works,19,34,35 we have attempted to explore
the dual-scale flow through fibrous porous media using the Stokes-
Brinkman model with the effective viscosity (μe/μ = 1) and stress
jump coefficient (β = 0.7)19 and characterized the anisotropic slip
length at the interface between the fluid and porous media.34,35 In
the present study, by matching the slip velocity at the interface,
we will present the optimal expressions of the effective viscosity
and stress jump coefficient as a function of porous microstructure
and fiber volume fraction using the slip length. The accuracy of the
Brinkman model with such an optimal effective viscosity or optimal
stress jump coefficient will be examined by comparing the velocity
field from these Stokes-Brinkman simulations and from the corre-
sponding direct simulations with the actual porous architectures.
Finally, the Stokes-Brinkman coupling is employed to solve a more
practical dual-scale problem of the flow around a cylindrical fiber
tow. The performance of the Stokes-Brinkman coupling with the
continuous stress condition and the stress jump condition will be
discussed.

II. THE OPTIMAL EFFECTIVE VISCOSITY AND STRESS
JUMP COEFFICIENT
A. Quantification of the effective viscosity and the
stress jump coefficient

In the present work, the effective viscosity in the Stokes-
Brinkman coupling and the stress jump coefficient in the Ochoa-

Tapia and Whitaker model26,27 are matched for a simple pressure-
driven flow over a flat porous surface and these parameters will be
used for the rest of this work. By making comparison to the analytic
slip velocity of the effective Navier-slip condition at the interface,
one can derive the optimal expressions of these two parameters in
terms of the slip length, permeability, porosity, and porous architec-
ture. The effective slip length for the porous surface has been already
quantified accurately in authors’ previous work,34,35 and the closed
form expressions for the optimal effective viscosity and the stress
jump coefficient will be derived based on these expressions in this
section.

We begin with a brief review of the effective Navier-slip
representation for the interfacial slip over a porous medium
for the completeness of this work. (Details can be found in
the work of Lu and co-authors.34,35) Figure 1 shows a trans-
verse flow over a fibrous porous medium with the coordinate
system. The upper half of the domain (0 < y < H) is the
fluid region Ωf , and the lower half (y < 0) is the porous
region Ωp. The pressure difference is assigned in the horizon-
tal direction. In the previous works, we reported that the effec-
tive Navier-slip condition over an imaginary smooth interface
between fluid and porous media can describe the slip veloc-
ity as well as the velocity profile in the fluid domain accu-
rately for various unidirectional porous architectures, even for
anisotropic flows. The Navier-slip condition can be written as uslip
= b⋅(n⋅∇u). The symbols b and uslip denote the slip length ten-
sor and the slip velocity vector at the interface, respectively. In a
simple pressure-driven channel flow over a flat surface (Fig. 1),
it becomes

uslip = b
du
dy

. (5)

The effective slip length b has been obtained by the flow rate match-
ing method, the original Beavers-Joseph method,28 and it can be
expressed as

b =
(Q∗ − 1)H − 6K/H

4 −Q∗ , (6)

where Q∗ is the flow rate ratio (the ratio of the flow rate subjected
to the slip boundary condition to that with the no-slip boundary
condition) and H is the height of the channel. In authors’ previ-
ous work,34,35 the slip length b for various architectures and the
fiber volume fractions have been calculated. For a sufficiently large
channel height around ten times greater than the fiber radius, the
slip length appears constant, independent of channel height, and
can be considered as the property of the porous surface. Note
that, due to the difference in the flow resistance in the transverse
and longitudinal directions, the slip length appears anisotropic. In
the present study, we only focus on the flow in the transverse
direction. For a given porous interface, one can find the velocity
profile as a function of the slip length, the permeability, and the
height of the channel in this channel flow using the Beavers-Joseph
boundary condition,28 du/dy = αBJ/

√
K(u − uD), with uD being

the Darcy velocity and αBJ being the dimensionless slip coefficient
(αBJ =

√
K/b),
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u(y) =
⎛
⎝
H/
√
K(H/

√
K + 2

√
K/b)

2(1 +
√
K/b ⋅H/

√
K)

+

√
K/b(H2/K − 2)

2(1 +
√
K/b ⋅H/

√
K)

×( y√
K
) − 1

2
( y√

K
)

2⎞
⎠
⋅ uD. (7)

In Eq. (7), the velocity at y = 0, the slip velocity, is now expressed in
terms of the slip length

us =
H/
√
K ⋅ (H/

√
K + 2

√
K/b)

2(1 +
√
K/b ⋅H/

√
K)

⋅ uD. (8)

In authors’ early works,34,35 we reported the slip length for vari-
ous porous architecture and porosities, and interestingly, we showed
that the slip length can be approximated by a single master equation
independent of the porous architectures, once it is normalized and
the dimensionless void length is employed. The dimensionless void
length d∗ is the fraction of the free surface at the interface and is
defined as

d∗ = 1 −
√
ϕs/ϕs max, (9)

where ϕs is the solid fraction (fiber area fraction) and ϕs max is the
maximum solid fraction in a unit cell (ϕs max = π/4 for the quadri-
lateral structure and ϕs max = π/2

√
3 for the hexagonal structure).

Then, the dimensionless slip length, normalized by the fiber radius
R, can be fitted by a single master equation

b∗ = 0.67d∗2.41 + 0.09, b∗ = b/R. (10)

The above slip length expression can be incorporated with the
Stokes-Brinkman coupling, from which the relationship between
the dimensionless slip length and the effective viscosity as well as
that with the stress jump coefficient can be readily obtained. We
will briefly present this procedure using the analytic solution of the
Stokes-Brinkman coupling in both porous and fluid domains with
the given boundary conditions (Fig. 1). (See the work of Hwang and
Advani12 and Neale and Nader16 for similar approaches.) Neglecting
the inertia, flows in the fluid region can be described by the Stokes
equation, and in this case, d2uf /dy2 = 1/μ⋅(dp/dx). As for the flow in
the porous media, it can be described by the Brinkman equation, i.e.,
μed2up/dy2 − μ/K⋅up = dp/dx. No-slip condition is applied on the top
surface. Within the porous media away from the interface, Darcy’s
law, i.e., up = −K/μ⋅(dp/dx), needs to be recovered due to vanish-
ing viscous stress up → uD, y → −∞. The problem described here
is actually the same as that in obtaining the slip length in the effec-
tive Navier-slip problem (Fig. 1). At the interface, the velocity from
both the regions must be continuous (uf = up) and the stress can be
either continuous (the original S-B coupling) and discontinuous (the
OT-W model). The continuous stress condition can be given in this
parallel flow as

μ
duf
dy
− μe

dup
dy
= 0. (11)

The stress jump condition (Ochoa-Tapia and Whitaker26,27) can be
written as

μe
dup
dy
− μ

duf
dy
= μ β√

K
us, (12)

where β is the stress jump coefficient. According to Ochoa-Tapia
and Whitaker,26,27 the value of the effective viscosity is suggested as
μe/μ = 1/(1 − ϕs) with the stress jump condition and therefore the
stress jump coefficient β is the only adjustable parameter in their
model.

Based on the governing equations and the boundary condi-
tions above, one can obtain the solutions in the fluid region and
in the porous region for the continuous stress condition and the
stress jump conditions, respectively. Specifically, the slip veloc-
ity at the fluid/interface can be expressed in terms of the effec-
tive viscosity for the continuous stress condition [Eq. (13)] and in
terms of the stress jump coefficient for the stress jump condition
[Eq. (14)]

us =
H/
√
K ⋅ (H/

√
K + 2

√
μe/μ)

2(1 +
√
μe/μ ⋅H/

√
K)

⋅ uD (Continuous stress),

(13)

us =
H/
√
K ⋅ (H/

√
K + 2

√
1/(1 − ϕs))

2(1 − β ⋅H/
√
K +
√

1/(1 − ϕs) ⋅H/
√
K)
⋅ uD (Stress jump).

(14)

By comparing the slip velocity at the interface from the work
of Beavers-Joseph [Eq. (8)] with the effective slip length to the
slip velocities subjected to the continuous/discontinuous stress
[Eqs. (13) and (14)], one can find the closed form expressions for
the relative effective viscosity (normalized by the fluid viscosity) and
the stress jump coefficient as follows:

μeOPT

μ
= K
b2 , (15)

βOPT =
(1/(1 − ϕs) −

√
K/b)(H2/2K − 1)

H2/2K + H/b . (16)

The superscript “OPT” indicates the expressions in Eqs. (15)
and (16) are optimal for both the effective viscosity and the stress
jump coefficient. We have some remarks in this procedure:

(i) Matching the slip velocity using the exact slip length
from the Navier-slip implies that the velocity gradient at
the interface of the fluid domain is naturally described
(us = bdp/dn);

(ii) The velocity gradient at the interface in the porous media
domain is also predicted accurately for both cases by the
interfacial stress conditions [Eqs. (11) and (12)];

(iii) The Darcy velocity away from the interface is always satisfied
correctly, which is inherited from the Brinkman model with
the vanishing viscous stress term;

(iv) The slip length in the present work is evaluated with the
Navier-slip condition, i.e., us = b(n⋅∇u). On the other hand,
the effective viscosity and the stress jump coefficient are
estimated based on the slip velocity of Beavers-Joseph28
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(α/
√
K(us − uD) = n ⋅ ∇u). As mentioned in authors’ previ-

ous work34 and in the work of Saffman,36 the error in the slip
velocity is limited to O(K), which is negligible in practical
composites manufacturing applications.

As mentioned in the above remarks, the Stokes-Brinkman sim-
ulation with the optimal effective viscosity and stress jump coeffi-
cient can satisfy naturally for the flow in the fluid region (see “1” in
Fig. 1), the slip velocity (“2”) along with the stress (velocity gradi-
ent) there (“5”), and the flow within the porous media away from
the interface (“4”). The remaining issue is the flow in the bound-
ary layer (“3”) with the prediction of the boundary layer thick-
ness. In addition, a seepage flow may appear within the porous
media, if the upstream flow is not exactly parallel to the fluid/porous
interface, and the description of the seepage flow is another

criterion for the optimal choice. We will present the performance of
both the continuous stress condition and the stress jump condition
in describing the flow inside the boundary layer and the seepage flow
later.

Substituting the approximate expression of the slip length
[Eq. (10)] into Eqs. (15) and (16) and considering the relation-
ship between the dimensionless void length and the solid vol-
ume fraction [Eq. (9)], the optimal relative effective viscosity
and the stress jump coefficient can then be expressed in closed
forms as a function of the permeability, porosity, and the porous
architecture,

μeOPT

μ
= ((0.67(1 −

√
ϕs/ϕsmax))

2.41
+ 0.09)

−2
K′, (17)

βOPT =
(1/(1 − ϕs) −

√
K′((0.67(1 −

√
ϕs/ϕsmax))

2.41
+ 0.09)

−1
)((H/R)2/2K′ − 1)

(H/R)2/2K′ + (H/R)/((0.67(1 −
√
ϕs/ϕsmax))

2.41
+ 0.09)

. (18)

The symbol K′ denotes the normalized permeability, which can
be calculated using the Gebart model,37 i.e., K′ = (16/9π

√
2)

(
√
ϕsmax/ϕs − 1)

5/2
and K′ = (16/9π

√
6)(
√
ϕsmax/ϕs − 1)

5/2
for

the quadrilateral and the hexagonal packing structures, respectively.
In Figs. 2 and 3, we present the relative effective viscosity and
the stress jump coefficient as a function of the solid fraction for
both quadrilateral and hexagonal structures. For comparison, those
from the literature are plotted together.13,17,23,25–27,31–33 In addition,

FIG. 2. The relative effective viscosity as a function of the solid volume fraction: a
comparison between the present work with the literature.13,17,23,25–27,33

the values of the relative effective viscosity and the stress jump
coefficient along with the permeability are listed in Table I as a func-
tion of the solid fraction for the quadrilateral and the hexagonal
packing structures in the transverse direction. As the solid fraction
increases, the optimal relative effective viscosity decreases sharply
from the factor of O(10) to O(0.01): ϕs = 0.1, μeOPT/μ = 16.909
for quadrilateral structure, and 11.246 for hexagonal structure;

FIG. 3. The stress jump coefficient as a function of the fiber volume fraction: a
comparison of the present work to results presented in the work of Valdes-Parada
and co-authors.31–33
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TABLE I. The optimal relative effective viscosity and the stress jump coefficient along
with the normalized permeability as a function of the fiber volume fraction for the
“Quadrilateral” and the “Hexagonal” packing structures in the transverse direction.

Quadrilateral Hexagonal

ϕs K/R2 μeOPT/μ βOPT K/R2 μeOPT/μ βOPT

0.1 1.745 16.909 −2.563 1.326 11.246 −2.0
0.2 0.382 8.340 −1.561 0.313 5.655 −1.083
0.3 0.120 4.945 −0.776 0.108 3.532 −0.442
0.4 0.041 2.702 0.0227 0.042 2.196 0.183
0.5 0.013 1.190 0.906 0.016 1.227 0.888
0.6 0.003 0.353 1.904 0.006 0.563 1.747
0.7 0.0003 0.042 3.129 0.002 0.185 2.902
0.8 . . . . . . . . . 0.0002 0.030 4.827

ϕs = 0.7, μeOPT/μ = 0.042 for quadrilateral structure, and 0.185 for
hexagonal structure. With the increase in the solid fraction, the value
of the stress jump coefficient increases also from negative to positive
values ranging from −2.563 to 3.129 for the quadrilateral structure
and −2 to 4.827 for the hexagonal structure, respectively, which is
in agreement with the findings of Ochoa-Tapia and Whitaker26,27

such that the stress jump coefficient can be either positive or neg-
ative, and it yields the value of O(1). It would be worthwhile to
mention the difference from the previous work of Tan et al.33 Their
results are limited to the fiber volume fraction from 0.1 to 0.5 with
the regular packing architecture only. In the present work, we pro-
vide the effective viscosity and stress jump coefficient for a wide
range of fiber volume fractions and for two different microstruc-
tures (quadrilateral and hexagonal) with explicit functional
expressions.

B. Verification of the optimal effective viscosity
and the stress jump coefficient

Having characterized the optimal effective viscosity and the
stress jump coefficient, we validate the accuracy of the Stokes-
Brinkman coupling with these two optimal parameters in describing
a dual-scale flow. A flow over a flat porous medium is chosen as the
test problem as shown in Fig. 4, where the flow is described in two
ways: one is the flow over the actual porous architecture (quadri-
lateral in this case) and the other is the corresponding flow over an
effective porous surface. The dimensionless channel height is set as
64 (H/R = 64), and the periodic boundary condition with the pres-
sure jump is applied in the horizontal direction. Direct simulation
[Fig. 4(a)] for flow over the porous media with full consideration of
fibrous microstructure has been compared to the Stokes-Brinkman
simulation [Fig. 4(b)] using an effective porous region characterized
by the permeability K and the effective viscosity μe. The permeabil-
ity is obtained by Gebart,37 and the optimal effective viscosities and
effective stress jump coefficients are evaluated by Eqs. (15) and (16).
The direct flow simulation seeks a continuum solution based on
the standard Galerkin finite-element method with the velocity and
pressure as their primary unknowns. The accuracy in this direct sim-
ulation has been evaluated and validated already in authors’ previous
work.34

FIG. 4. The computational model for the 1D transverse flow over a fibrous porous
medium. (a) A model for the direct simulation with the actual complex micro archi-
tecture; (b) the corresponding flow model for the Stoke-Brinkman coupling with a
fictitious effective porous region.

To make assessment of the accuracy of the Stokes-Brinkman
model, velocity fields from both the simulations need to be com-
pared in four regions as shown in Fig. 1: (i) the velocity in the fluid
region (channel flow, 0 < y < H), (ii) the slip velocity and its slope
(velocity gradient) at the interface (y = 0), (iii) the velocity profile in
the boundary layer, and (iv) the Darcy velocity in the porous media
away from the interface.

In direct simulations, the entire flow region [Fig. 4(a)] is solved
with the Stokes equation [Eq. (1)] and a unit pressure drop is applied
in the flow direction, considering additional no-slip boundary con-
dition on the fiber boundaries and the bottom and top walls. To
implement the Stokes-Brinkman coupling [Fig. 4(b)], we separately
solve the Stokes equation for the flow in the fluid region (0 < y < H)
and the Brinkman equation for the flow in the porous media
(y < 0). At the fluid/porous interface (y = 0), the velocity is con-
sidered to be continuous (uf = up), with which the stress balance is
naturally satisfied for the continuous stress condition. In case of the
stress jump condition, according to Eq. (12), an additional weak con-
tribution in the weak form of the momentum equation is assigned
at the interface for the jump stress ∫∂Ωf∩∂Ωp

μβ/
√
K(u ⋅ v)dΓ, with

v being a test function. COMSOL Multiphysics 4.4 is employed to
implement all the simulations with the quadrilateral velocity and
linear pressure interpolations. Although not presented here, mesh
convergence has been checked until the relative error in slip coef-
ficient appears O(10−3), as was done in the work of Lu et al.34

Plotted in Fig. 5 are the velocity profiles along the line “l” (see
Fig. 4) passing through the centerline of the periodic unit domain,
from direct simulations and that from the Stokes-Brinkman cou-
pling using either the continuous stress condition or the stress jump
condition for various fiber volume fractions: ϕs = 0.1 [Fig. 5(a)],
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FIG. 5. Velocity profiles along the line “l”
(indicated in Fig. 4) from the direct sim-
ulations and the Stokes-Brinkman cou-
pling with the optimal effective viscos-
ity ratios and the optimal stress jump
coefficients for the quadrilateral struc-
ture. Results from the identical effec-
tive viscosity ratios are also plotted for
comparison: (a) ϕs = 0.1, μeOPT

/μ
= 16.91, βOPT

= −2.563; (b) ϕs = 0.3,
μeOPT

/μ = 4.95, βOPT
= −0.776; (c) ϕs

= 0.5, μeOPT
/μ = 1.19, βOPT

= 0.906;
and (d) ϕs = 0.7, μeOPT

/μ = 0.04,
βOPT

= 3.129.

ϕs = 0.3 [Fig. 5(b)], ϕs = 0.5 [Fig. 5(c)], and ϕs = 0.7 [Fig. 5(d)]. In
each case, we present the velocity profiles from direct simulation and
the Stokes-Brinkman coupling with the optimal effective viscosity
and that with the optimal stress jump coefficient. The results from
the Stokes-Brinkman coupling with the identical effective viscosity
(μe = μ), a common choice in the literature,19–21 are also presented
for comparison. Note that the line “l” starts from the fluid region,
passing through the fluid/porous interface and ends in the Darcy
region within the porous media. Due to the complex flow behavior
near the interface, we applied the line averaged velocity as shown in
Fig. 4 to obtain the macroscale properties, i.e., u(y) = 1/w0 ∫ udx,
with w0 being the width of the unit flow region. From the results
in Fig. 5, one can observe that solutions from both the continuous
stress condition with the optimal effective viscosities and the stress
jump condition with the optimal stress jump coefficients agree well
with that from the direct simulations for various fiber volume frac-
tions, for both the flow in the fluid region (“1” in Fig. 1) and in

the porous region (“4”). Moreover, both these two optimal solu-
tions can accurately predict the slip velocities as well as the slopes
at the interface (“2”). However, a significant discrepancy is observed
with the identical relative effective viscosity (μe = μ), particularly
for low solid volume fractions. For example, in case of the solid
volume fraction of 0.1, the slip velocity from the identical effec-
tive viscosity is found around 3 times larger than that from the
direct simulation. As for the velocity profile in the boundary layer,
although it is not easy to clearly identify the boundary layer from the
direct simulations, one can summarize the observations as follows:
(i) for low fiber fractions (ϕs = 0.1 and ϕs = 0.3), the optimal con-
tinuous stress condition seems to overpredict the boundary layer,
whereas the optimal jump stress condition predicts its thickness bet-
ter; (ii) for medium (ϕs = 0.5) and high (ϕs = 0.7) fiber fractions,
the optimal continuous stress condition underestimate the bound-
ary layer thickness, compared to the optimal stress jump condition.
The accuracy in the prediction of the boundary layer thickness of the
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TABLE II. The relative error of slip velocity and the relative error norm of velocity distribution in the fluid region in the flat
channel flow for different fiber volume fractions with various stress boundary conditions.

Continuous stress condition Stress jump condition with
μe = μ Optimal μe optimal β

ϕs Eslip (%) Evel (%) Eslip (%) Evel (%) Eslip (%) Evel (%)

0.1 237.35 324.23 0.84 1.15 3.02 4.13
0.3 97.7 112.37 0.45 0.52 0.72 0.83
0.5 4.51 4.92 0.66 0.72 0.59 0.64
0.7 79.6 84.5 4.98 5.29 4.12 4.37

continuous stress condition with the optimal effective viscosity is
found to depend strongly on the fiber volume fraction. However, this
drawback of the Stokes-Brinkman coupling with effective viscosity
seems not to be serious concern in a practical situation with medium
and high fiber volume fraction on composite manufacturing. In
addition, the relative error of slip velocity and the relative error
norm of velocity distribution in the fluid region for different fiber
volume fractions with various stress boundary conditions are listed
in Table II.

III. FLOW OVER A CYLINDRICAL FIBER TOW
The Stokes-Brinkman coupling with both the continuous stress

condition and the stress jump condition has been applied and vali-
dated in describing the coupled flow with flat interfaces. A challeng-
ing issue remains how to deal with the Stokes-Brinkman coupling,
when the shape of interface is curved, for example, the cross sec-
tions of the reinforcements or the fiber tows are usually elliptic in
the liquid composite manufacturing. In this section, we will solve an
example problem for a flow over a fibrous porous medium in which
the shape of the interface is curved. As shown in Fig. 6(a), there is a

FIG. 6. A schematic description of an example flow over a cylindrical dual-scale
porous tow: (a) the direct simulation for flow through arrays of cylinders and (b) the
Stokes-Brinkman coupling with a fictitious cylindrical porous region.

flow over/through arrays of cylinders, which are arranged similar to
the hexagonal pattern. Figure 6(b) is a flow over/through an effective
porous region characterized by the permeability K and the effective
viscosity μe.

Before investigating the applicability of the Stokes-Brinkman
coupling in describing such a complex coupled flow, the perme-
ability should be first characterized accurately. As the permeabil-
ity is involved in evaluating both the Stokes-Brinkman equation
and the effective viscosity/stress jump coefficient through the slip
length, the evaluation and application of the correct permeability
is of great importance. We remark that the permeability in the slip
length expression [Eq. (6)] (a “local” permeability) might be differ-
ent from the permeability in the Stokes-Brinkman equation [Eq. (2)]
(a “global” permeability). Note that the slip length depends solely
on the local quantity at the interface, which implies that it can
be estimated by the local fiber structures (hexagonal in this case),
particularly by the structure on the outer-most layer.34 Therefore,
the Gebart expression37 for the permeability and Eq. (6) have been
employed to estimate the local slip length and therefore the effec-
tive viscosity and the stress jump coefficient. According to Table I,
the values of the optimal relative effective viscosity μeOPT/μ and
the stress jump coefficient βOPT are 5.655 and −1.083, respectively,
for the hexagonal structure (ϕs = 0.2). Note that the stress jump
condition in this problem is applied only in the tangential direc-
tion as shown in Eq. (4) and the tangent vector along the surface,
where the stress jump is applied, varies with the cylindrical tow
interface.

On the other hand, one needs a “global” permeability as well
to perform the flow simulation with the Stokes-Brinkman equation.
Unlike the local permeability for the slip length, the global perme-
ability is the Darcy permeability that relates the pressure drop and
the flow rate. The global permeability of the cylindrical fiber tow
is often estimated using the radial flow (see the work of Sozer and
Advani38) as follows:

K = Qr
μ

2π
ln(r0/rm)
pi − p0

. (19)

The symbols Qr , rm, r0, pi, and p0 are the radial flow rate, the radial
position for pressure measurement, the outer radius of the cylindri-
cal porous region (in this case is 10.252 mm), the measured pressure
at the radial position rm, and the pressure at the interface at r0,
which is usually the atmospheric pressure. The fiber volume frac-
tion of the tow is measured as 0.2, considering cylindrical porous
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media of radius r0. COMSOL Multiphysics 4.4 is employed to imple-
ment the simulations in this example flow problem. Although not
presented here, we have tested the mesh refinement characteris-
tics to ensure the accuracy more than three digits in estimating
the global permeability. Various pressure measurement positions rm
have been employed to estimate the permeability, and the difference
in the global permeability on the choice of rm is found to be neg-
ligibly minor. Consequently, we adopt the pressure measurement
position rm being rm/r0 = 0.434 and the corresponding permeabil-
ity is found to be 2.22 × 10−8 m2, which is 10% larger than the
local permeability of a hexagonal fiber packing for the same fiber
fraction (ϕs = 0.2).37

To understand the performance of the Stokes-Brinkman cou-
pling in describing the coupled flow with a curved interface, we
would like to exam the velocity profiles along three lines from the
direct simulation [Fig. 6(a)] and from the Stokes-Brinkman cou-
pling [Fig. 6(b)], where both the continuous stress condition and
the stress jump condition with the optimal parameters have been
applied. For the continuous stress condition, a velocity profile from

the identical effective viscosity (μe = μ) is plotted as well for compar-
ison. The results are presented in Fig. 7. In general, along line 1 and
line 2 [Figs. 7(a) and 7(b)], once the optimal parameters are applied,
the Stokes-Brinkman coupling with both the continuous/jump stress
conditions can match the velocity profiles in the entire domain accu-
rately. The continuous stress condition with the conventional iden-
tical effective viscosity fails to predict the slip velocity at the interface
(with the error being 174% for line 1 and 178% for line 2). The esti-
mation of the slip velocity has been improved significantly, once
the optimal parameters are chosen. For example, the error of the
slip velocity from the continuous stress condition with the opti-
mal effective viscosity is found around 29.5% for line 1 and 29.8%
for line 2. Similarly, the error of the slip velocity from the stress
jump condition with the optimal stress jump coefficient is around
21.6% for line 1 and 22.1% for line 2. As for line 3, all these three
conditions yield a relatively good prediction in estimating the slip
velocity, with the error being 12.6% for the continuous stress condi-
tion with the conventional identical effective viscosity, 13.2% for the
continuous stress condition with the optimal effective viscosity and

FIG. 7. Velocity profiles along three lines
(indicated in Fig. 6) from the direct simu-
lation and the Stokes-Brinkman coupling
with the continuous stress condition and
the stress jump condition: (a) along the
line 1, (b) along the line 2, and (c) along
the line 3.
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TABLE III. The relative error of slip velocity and the relative error norm of velocity distribution in the fluid region along three
lines in the flow over a cylindrical fiber tow (Fig. 6) with various stress boundary conditions.

Continuous stress condition Stress jump condition with
μe = μ Optimal μe optimal β

Eslip (%) Evel (%) Eslip (%) Evel (%) Eslip (%) Evel (%)

Line 1 174 182.39 29.5 31.43 21.6 23.18
Line 2 178 192.07 29.8 30.80 22.1 22.99
Line 3 12.6 29.12 13.2 13.55 1.8 2.09

1.8% for the stress jump condition with the optimal stress jump
coefficient. The relative error of slip velocity and the relative
error norm of velocity distribution in the fluid region along these
three lines with various stress boundary conditions are listed
in Table III.

In addition, similar to the results in Sec. II B, the continuous
stress condition with the optimal effective viscosity again overes-
timates the boundary layer thickness, while the stress jump condi-
tion with the optimal stress jump coefficient yields much improved
behaviors. Along the line 3, which is perpendicular to the porous
interface, one can observe the performance for the prediction of the
seepage flow and, as shown in Fig. 7(c), both the optimal param-
eters fail to yield correct “Darcy” velocity. In fact, there appears a
“shift” around 50% of the velocity from the direct simulation. This
may arise from the fact that both the optimal effective viscosity and
the stress jump coefficient are derived from the Navier-slip length
b, whereas the Navier-slip condition requires the flow direction par-
allel to the interface. Therefore, the Stokes-Brinkman coupling itself
with both the optimal parameters has a deficiency in describing such
an impinging seepage flow.

IV. CONCLUSIONS
The optimal effective viscosity and the stress jump coefficient in

the Stokes-Brinkman coupling for flows in dual-scale porous media
have been accurately characterized, using the slip length, which can
be obtained from the Navier-slip boundary condition. The corre-
lations between the slip length and the effective viscosity as well
as the stress jump coefficient are rigorously derived in this work.
Once the optimal parameters are chosen (i.e., the effective viscosity
and the stress jump coefficient), both the continuous stress condi-
tion and the stress jump condition in the Stokes-Brinkman cou-
pling can describe the flow field in a channel with a porous sur-
face, reproducing accurate velocity profile inside the fluid channel,
the slip velocity as well as its gradient (stress) at the fluid/porous
interface and Darcy’s velocity within the porous wall. For the flow
in a thin boundary layer beneath the interface, the continuous
stress condition fails to predict the boundary layer thickness par-
ticularly for very small volume fractions, whereas the stress jump
condition can reproduce them well, even for very low volume frac-
tion. In addition, both of these optimal parameters fail to yield
the correct impinging seepage flow. Improvement of the Stokes-
Brinkman model for the seepage flow is the subject of the future
investigation.

It is worthwhile to mention that, in our approach, both the
effective viscosity and the stress jump coefficient might be consid-
ered as a property of the porous media. As reported in authors’
previous work,34 once the channel height is large enough compared
to the fiber radius, for example, H/R > 10, the Navier-slip length b
solely depends on the outmost microstructure of the interface: the
dimensionless void length d∗, which in fact is the fraction of the free
slip region at the porous interface. For a given porous structure, the
optimal values of the effective viscosity and the stress jump coeffi-
cient are easily determined since both of these two parameters are
derived from the slip length b [see Eqs. (15) and (16)]. By accurately
characterizing the optimal effective viscosity or the stress jump coef-
ficient, the Brinkman model with a macroscopically characterized
porous domain can be applied to replace the microstructural fibrous
porous media, with which the computational cost will be reduced
considerably when dealing with void formation/transport and par-
ticle deposition/filtration.10–12 The optimal values of the effective
viscosity and of the stress jump coefficient obtained in this work (see
Table I) may provide an effective framework in describing a flow in
dual-scale porous media.
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